

1

Improving Gene Expression Programming Method
Dr. Najla Akram AL-Saati Prof. Dr. Nidhal Al-Assady

Software Engineering Dept.
College of Computers and Mathematical Sciences

ABSTRACT

In this work the algorithm of Gene Expression Programming (GEP) is investigated
thoroughly and the major deficiencies are pointed out. Multiple suggestions for
enhancements are introduced in this research aiming at solving the major deficiencies that
were investigated. These improvements produced higher success rates and avoid the
malfunctioning situations found in GEP. These deficiencies or weak points include:
choosing the best parameter settings, using only one linking function, gene flattening
problem, illegal operations in genes and lack of function biasing. Improvements suggested
the following enhancement features: the Multi-Population feature, the Emergency Mutation
feature, and the feature of Component Biasing. Tests are carried out using two different
symbolic regression problems.

 التعبير الجيني الوراثيباستخدام البرمجة طريقة تحسين
 الاستاذ الدكتور نضال حسين الاسدي نجلاء اكرم الساعاتي. د

 قسم هندسة البرمجيات

 كلية علوم الحاسبات والرياضيات

 الخلاصة
 Gene()البرمجة باستخدام التعبير الجيني الوراثي(خوارزمية اجراء دراسة حول يتناول هذا البحث

Expression Programming(وقد . حيث تم ابراز اهم المشاكل التي تعاني منها هذه الطريقة شامل وموسعبشكل

تقوم هذه التحسينات بانتاج نسب نجاح عالية مقترحات لتحسين وحل تلك المشاكل حيث عدةتم في هذا البحث تقديم

اختيار افضل : عفضتتضمن هذه المشاكل او نقاط ال.)GEP(وتتلافى الحالات غير الصحيحة المكتشفة في طريقة

اقترح . ، مشكلة تسطح الجين، والعمليات غير القانونية في الجيناتربط واحدة فقط ةالللمعاملات، استخدام د اعدادات

نحياز خاصية الوحدات السكنية المتعددة ، خاصية طفرة الطوارئ ، وخاصية الا :في التطوير تقديم التحسينات التالية

). symbolic regression(تم اجراء الاختبارات باستخدام مسألتين مختلفتين من الانحدار المرمز . للمكونات

2

1 Introduction
Gene Expression Programming (GEP) was introduced by Ferreira in 2001 [5].

The great insight of GEP consisted in the invention of chromosomes capable of
representing any expression tree. For that a new language (Karva) was created so that
the information of GEP chromosomes could be read and expressed. The structural and
functional organization of genes always guarantees the production of valid programs,
no matter how much or how profoundly the chromosomes are modified.

Gene expression programming (GEP) is, like genetic algorithms (GAs) and
genetic programming (GP), a genetic algorithm as it uses populations of individuals,
selects them according to fitness, and introduces genetic variation using one or more
genetic operators. GAs, with their simple genome and limited structural and
functional diversity, resemble a primitive RNA World, whereas GP, with its structural
and functional diversity, resembles a hypothetical Protein World. Only when
molecules capable of replication joined molecules with catalytic activity, forming an
indivisible whole, was it possible to create more complex systems and, ultimately, the
first cell. Since then, the genome and phenome mutually presume one another and
neither can function without the other. Similarly, the chromosomes and expression
trees of GEP mutually presume one another and neither exists without the other.[5]

The advantages of a system like GEP are clear from nature, but the most
important should be emphasized: First, the chromosomes are simple entities: linear,
compact, relatively small, easy to genetically manipulate (replicate, mutate,
recombine, transpose, etc.). Second, expression trees are exclusively the expression of
the respective chromosomes; they are the entities upon which selection acts and,
according to fitness, they are selected to reproduce with modification. During
reproduction it is their chromosomes, not the ETs, which are reproduced with
modification and transmitted to the next generation.

GEP is a vastly growing field and it has recently been applied in many research
areas such as Hydraulic Data Mining [4] and Classifier Conditions [16].

2 GEP Method
2.1 The Structure of the Chromosome

The phenotype of GEP individuals consists of the same kind of diagram
representations used by GP. However, these complex entities are encoded in simpler,
linear structures of fixed length (chromosomes). Thus, the main parts in GEP are two
entities: the chromosomes and the expression trees (ETs), being the latter the
expression of the genetic information encoded in the former. The process of
translating the chromosomes to ETs implies a kind of code and a set of rules. The
genetic code is very simple: a one-to-one relationship between symbols and functions
or the terminals they represent. The rules are also simple: they determine the spatial
organization of the functions and terminals in the ETs and the type of interaction

3

between sub-ETs in multigenic systems [6]. Given a GEP individual (genotype) in
Karva language, the phenotype can easily be represented by an ET as in Figure (1).

 An Expression The Corresponding The Expression Tree

 GEP chromosome
((a-b)*(c+d))2

 01234567
S*-+abcd

Note :‘S’ is the square function

Figure (1) Representation of the GEP Chromosome

Genes are composed of a head and a tail. The head contains both function (non-

terminal) and terminals symbols. The tail contains only terminal symbols. For each
problem the head length (h) is chosen by the user. Given the maximum arity n, or the
number of arguments for the function with the most arguments, the tail length (t) is
evaluated by:

t = (n – 1) h + 1 ……………………………………….…………..…… (1)

In this way if n=2 and h= 4, then t=5 and the total length of the gene is 9. So
despite their fixed length, GEP genes have the potential to code for ETs of different
sizes and shapes, being the simplest composed of only one node (the first element is a
terminal) and the biggest composed of as many nodes as the gene length (all head
elements are functions of maximum arity).

Figure (2) Multigenic Chromosomal Structure in GEP Method

*

+-

S

ba dc

4

GEP chromosomes are usually composed of more than one gene of equal length;
as in Figure (2) [12]. For each problem or run, the number of genes, as well as head
length, is a priori chosen. Each gene codes for a sub-ET that interact with one another
through a linking function forming a more complex multi-subunit ET.

Multigenic chromosome was introduced because it can happen that the first
symbol in a gene to be a terminal, and thus a single gene chromosome cannot
represent a complex expression. As an indirect consequence, if the first symbol of a
gene is a terminal then the rest of the gene is unused.

Breadth-first parsing is used in the translation of tree programs into genes, where
usually the gene is not entirely used for phenotypic transcription. If the first symbol in
the gene is a terminal, the expression tree consists of a single node. If all symbols in
the head are non-terminals the expression tree uses all the symbols of the gene.

Genes may be linked by a function symbol in order to obtain a fully functional
chromosome. The linking functions for algebraic expressions are addition and
multiplication. A single type of function is used for linking multiple genes. If the
functions {+ , - ,* ,/ } are used as linking operators then the complexity of the
problem grows substantially (since the problem of determining how to mix these
operators with the genes is as hard as the initial problem).[13]

2.2 GEP Algorithm

The flowchart of the Gene Expression Algorithm is shown in Figure (3). The
process begins with the random generation of the chromosomes of each individual in
the initial population. Then chromosomes are expressed and the fitness of each
individual is evaluated.

Individuals are then selected according to fitness to reproduce with modification,
leaving progeny with new traits. The individuals of this new generation are, in their
turn, subjected to the same developmental process. The process is repeated for a
certain number of generations or until a solution has been found. Reproduction here
includes not only replication but also the action of genetic operators capable of
creating genetic diversity. During replication, the genome is rigorously copied and
transmitted to the next generation. The operators randomly select the chromosomes to
be modified. Thus, in GEP, a chromosome might be modified by one or several
operators at a time or not be modified at all.[5]

2.3 Reproduction in GEP

According to fitness and the luck of the roulette, individuals are selected to
reproduce with modification, creating the necessary genetic diversity that allows
adaptation in the long run. Except for replication, where the genomes of all the
selected individuals are rigorously copied, all the remaining operators randomly pick
chromosomes to be subjected to a certain modification. However, except for

5

mutation, each operator is not allowed to modify a chromosome more than once.
Furthermore, in GEP, a chromosome might be chosen by one or several genetic
operators. Thus, the modifications of several genetic operators accumulate during
reproduction, producing offspring very different from the parents.

Figure (3) Flowchart of Gene Expression Programming

2.3.1 Replication
Although vital, replication is the most uninteresting operator: alone it contributes
nothing to genetic diversification. According to fitness and the luck of the roulette,
chromosomes are faithfully copied into the next generation. The fitter the individual
the higher the probability of leaving more offspring. Thus, during replication the
genomes of the selected individuals are copied as many times as the outcome of the
roulette. The roulette is spun as many times as there are individuals in the population,
maintaining always the same population size.

2.3.2 Mutation

Mutations can occur anywhere in the chromosome. However, the structural
organization of chromosomes must remain intact. In the heads any symbol can change
into another (function or terminal); in the tails terminals can only change into
terminals. This way, the structural organization of chromosomes is maintained, and

6

all the new individuals produced by mutation are structurally correct programs.
Typically, a mutation rate (pm) equivalent to 2 point mutations per chromosome is
used. Consider the If a mutation would occur in the following 3-genic chromosome, it
might change the element in position 0 in gene 1 to ‘Q’; the element in position 3 in
gene 2 to ‘Q’; and the element in position 1 in gene 3 to ‘b’.

Before After
012345678012345678012345678 012345678012345678012345678
-+-+abaaa/bb/ababb*Q*+aaaba Q+-+abaaa/bbQababb*b*+aaaba

2.3.3 Transposition and Insertion Sequence Elements

The transposable elements of GEP are fragments of the genome that can be
activated and jump to another place in the chromosome. In GEP there are three kinds
of transposable elements:
 1) Short fragments with a function or terminal in the first position that transpose to

the head of genes except to the root (insertion sequence elements or IS elements);
2) Short fragments with a function in the first position that transpose to the root of

genes (root IS elements or RIS elements);
3) Entire genes that transpose to the beginning of chromosomes.

2.3.3.1. Transposition of IS elements

Any random sequence in the genome might become an IS element. A copy of
the transposon is made and inserted at any position in the head of a gene, except at the
start position. Typically, a transposition rate (pis) of 0.1 and a set of three IS elements
of different length are used. The chromosome, IS element, target site, and length of
the transposon are all randomly chosen. Suppose that the sequence ‘bba’ in gene 2
(positions 12- 14) was chosen to be an IS element in the chromosome bellow:

012345678901234567890012345678901234567890
*-+*a-+a*bbabbaabababQ**+abQbb*aabbaaaabba

If the target site was bond 6 in gene 1 (between positions 5 and 6). Then, a cut is
made in bond 6 and the block ‘bba’ is copied into the site of insertion, obtaining:

012345678901234567890012345678901234567890
*-+*a-bba+babbaabababQ**+abQbb*aabbaaaabba

2.3.3.2. Root transposition

All RIS elements start with a function, and thus are chosen from the heads. For
that, a point is randomly chosen in the head and the gene is scanned downstream until
a function is found. This function becomes the start position of the RIS element. If no
functions are found, it does nothing. Typically a root transposition rate (pris) of 0.1
and a set of three RIS elements of different sizes are used. This operator randomly
chooses the chromosomes, the gene to be modified, the RIS element, and its length. If
the sequence ‘+bb’ in gene 2 was chosen as an RIS element in the next chromosome:
012345678901234567890012345678901234567890

7

-ba*+-+-Q/abababbbaaaQ*b/+bbabbaaaaaaaabbb

Then, a copy of the transposon is made into the root of the gene, obtaining:

012345678901234567890012345678901234567890
-ba*+-+-Q/abababbbaaa+bbQ*b/+bbaaaaaaaabbb

2.3.3.3 Gene Transposition

Here an entire gene functions as a transposon and transposes itself to the
beginning of the chromosome. In contrast to the other forms of transposition, in gene
transposition the transposon (the gene) is deleted in the place of origin. This way, the
chromosome’s length is maintained. The chromosome to undergo gene transposition
is randomly chosen, and one of its genes (except the first) is randomly chosen to
transpose. Considering the following chromosome, if gene 2 was chosen to undergo
gene transposition, then the following chromosome is obtained:

Before After
012345678012345678012345678 012345678012345678012345678
*a-*abbab-QQ/aaabbQ+abababb -QQ/aaabb*a-*abbabQ+abababb

2.3.4. Recombination

In GEP there are three kinds of recombination: 1-point, 2-point, and gene
recombination. In all cases, two parent chromosomes are randomly chosen and paired
to exchange some material between them.

2.3.4.1. One-point recombination

In 1-point recombination, the chromosomes cross over a randomly chosen point
to form two children chromosomes. Having the following parent chromosomes, if
bond 3 in gene 1 (between positions 2 and 3) was randomly chosen as the crossover
point, then the paired chromosomes are cut at this bond, and exchange between them
the material downstream the crossover point, forming the offspring:

Parents Offspring

012345678012345678 012345678012345678
-b+Qbbabb/aQbbbaab -b+/ababb-ba-abaaa
/-a/ababb-ba-abaaa /-aQbbabb/aQbbbaab

The 1-point recombination rate (p1r) used depends on the rates of other
operators. Typically a global crossover rate of 0.7 (the sum of the rates of the three
kinds of recombination) is used.

2.3.4.2. Two-point recombination
The chromosomes are paired and the two points of recombination are randomly
chosen. The material between the recombination points is afterwards exchanged
between the two chromosomes, forming two new children chromosomes. Consider
the following parent chromosomes, if bond 7 in gene 1 (between positions 6 and 7)
and bond 3 in gene 2 (between positions 2 and 3) were chosen as the crossover points.

8

Then, the paired chromosomes are cut at these bonds, and exchange the material
between the crossover points, forming the offspring:

Parents Offspring

0123456789001234567890 0123456789001234567890
+*a*bbcccac*baQ*acabab +*a*bbccbcc++*Q*acabab
*cbb+cccbcc++**bacbaab *cbb+ccccac*ba*bacbaab

2.3.4.3. Gene recombination

In gene recombination an entire gene is exchanged during crossover. The
exchanged genes are randomly chosen and occupy the same position in the parent
chromosomes. Consider the following parent chromosomes, if gene 2 was chosen to
be exchanged. In this case the following offspring is formed:

Parents Offspring

012345678012345678012345678 012345678012345678012345678
/aa-abaaa/a*bbaaab/Q*+aaaab /aa-abaaaQ+aQbabaa/Q*+aaaab
/-*/abbabQ+aQbabaa-Q/Qbaaba /-*/abbab/a*bbaaab-Q/Qbaaba

3 GEP Malfunctioning Conditions

GEP method was thoroughly investigated in this work, due to the fact that it is
considered to be the most appropriate approach among the various methods
introduced so far in this field. Carrying out such an investigation has led to the
discovery of five main issues that reduce the performance of GEP[1]. These are
described in the following sections.

3.1 The Choice of the Best Environmental Parameter Settings

This is a problem shared among all EAs; it is the decision of the right parameter
setting for an algorithm, which produces the best results possible. When defining an
EA there is a great need to choose its components, such as genetic operators, selection
mechanisms for selecting parents, and initial populations. Each of these may have
parameters, like: mutation probability, or population size. Values of these parameters
greatly determine whether the algorithm will find a near-optimum solution and
whether it will find one efficiently. Choosing the right parameters, however, is time-
consuming and considerable effort has gone into developing good heuristics for it.[3]

Early attempts put considerable efforts into finding parameter values, which
were good for a number of numeric test problems (experimentally determined). Later,
meta-algorithms were used to optimize values of these parameters. Eiben, et. al [3],
globally distinguished two major forms of setting parameter values: parameter tuning
(the common approach that amounts to find good values for parameters before the run
and then run the algorithm using them) and parameter control (remains fixed during
the run). They also give arguments that any static set of parameters, having the values
fixed during a run, seems to be inappropriate. Whereas Parameter control forms an

9

alternative, it amounts to starting a run with initial parameter values that are changed
during the run.

3.2 The Use of Different Linking Functions

Given a set of functions to be used in evolution, one function should be used to
link existing genes. This choice varies depending on the function set, the types of
functions included in the sets, and the rules to be evolved.

Using one of the linking functions through the entire evolution process is not
appropriate nor of any advantage to the system. Attempting to use varied linking
functions in one population will only cause the complexity of the problem to grow
substantially, while the problem of determining how to mix these operators with the
genes is as hard as the initial problem as mentioned earlier in section (2.1).

3.3 The Problem of Gene Flattening

Another fact noticed about GEP, is gene flattening in chromosomes. Flat genes
are genes with heads containing only terminal symbols; they may appear as a product
of applying the (IS insertion) of the transposition operator coupled with mutations
changing functions to terminals. This problem appears when there is no guarantee for
forbidding operators from destructing the functionality of the gene by eliminating
functions from the head.

Restricting the operator from inserting the chosen sequence at the beginning of
the head is not enough. In the worst case, the first symbol in the existing head might
just be a terminal leading to the destruction of any hope in saving the gene though
other operators. Repeated occurrence of this event can increase the rate of flat genes
in the chromosome. Even when the first symbol in the head is not a terminal, such a
process can reduce the efficiency of the gene by increasing terminals in heads, thus
producing poorly functioning genes that weaken chromosomes in the population.

3.4 The Problem of Illegal Operations in Genes

Through the process of evaluating a gene, it is very likely to encounter terminals
or operands to functions that, when evaluated, gives illegal results like division by
zero or square root of negative values. This usually leads to the termination of the
evaluation process, and thus excluding the contribution presented by the gene, and the
whole chromosome is assigned the worst fitness measure agreed upon. This will
certainly cause the loss of significant chances for introducing fit individuals in the
population. Chromosomes are assigned poor fitness values due to the existence of
illegal operands to functions in only one of its genes; other genes may have valuable
fitness measures to offer.

3.5 Improving GEP using Biased Components

10

Some EC algorithms try to increase efficiency and performance of the
evolutionary process by giving a higher rate of occurrence to some elements from the
function or terminal set that makes up the contents of genes in the chromosome. This
feature was employed in Multi Expression Programming.

In such a procedure, certain components, like addition or multiplication
operators, are usually assigned a higher chance of being introduced in the genes of the
chromosome than other operators. The idea is about focusing on the terms that are
more vital in the construction of a rule, and thus allowing evolution to adapt more
rapidly towards forming desired rules or programs.

4 Suggested Solutions

In an attempt to improve the performance of GEP, new characteristics are
introduced, the Multi-population feature, which is used to ensure better exploitation of
the properties possessed by the method. This feature is completely inspired by nature,
as many natural environments are found to adopt multi populations as ecosystems that
evolve simultaneously and concurrently under some certain resources or
environmental circumstances. Some of these situations are shared and are common
between such evolving ecosystems, while others are locally exclusive or restricted as
they vary from one population to another. This decisiveness usually depends on
environmental needs demanded by each individual population, another important
issue to rely on when choosing to localize or globalize an aspect relevant to a
population, is the overall performance of the resulting system.

Introducing this new feature involves decomposing existing large population into
a number of smaller distinct entities each having its own set of parameters, thus
forming several diverse environments that evolve independently and simultaneously.
In GEP there are some certain settings that must be globally maintained to all
populations, while others need to be locally differentiated to overcome certain
malfunctioning phenomena. Useful issues that can be viewed using this feature are:
1- Introducing various environments to enhance evolution: this is done by

dividing the impact of large populations with the same evolutionary features. Thus
using small multiple ones with various environmental features.

2- Finding parameter sets: helps to find the appropriate set of parameters applied to
a system, instead of trying to find them by hand tuning.

3- Evaluating Genetic Dynamics: varying operator’s probabilities in a multi-
population collection while fixing others and making them global to the whole
environment. This is very useful in the study of dynamics.

4- Evaluating Environmental Settings: population size, number of generations,
chromosomal length and number of genes can each be evaluated using multi-
population collections. This enables the study of the impact that these settings have
on the behavior of the system.

11

This feature is used in the following section to improve first and second
problems. As for the third and fourth, a monitoring process is added to detect the
occurrence of flat genes or illegal operations in the population and are avoided using
emergency mutations. Considering the idea of component biased assigning, GEP can
be improved by giving more weight to one or more solution components. The choice
of biasing a certain component among the set is done depending on the type of rule or
program to be evolved.

5 Symbolic Regression
5.1 Problem Description

The symbolic regression problem can be stated as finding a function in a
symbolic form that fits a given finite sample of data [9]. The advantage of symbolic
regression over standard regression methods is that in symbolic regression, the search
process works simultaneously on both the model specification problem and the
problem of fitting coefficients. Symbolic regression would thus appear to be a
particularly valuable tool for the analysis of experimental data where the specification
of the strategic function used is often difficult, and may even vary over time.[2]

The system is given a set of input and output pairs, and must determine the
function that maps one onto the other. Symbolic regression tries to reconstruct a
mathematical function just using a set of data samples. This data can be pairs of
independent and dependent variables that are samples of a possibly unknown
function. As an aspect of Data Mining, symbolic regression is inherently
computationally extensive because of the lack of a model solution in general.[14] The
problem, in its essence, is an optimization problem; a search is conducted for the most
fitting individual to the data, in the space of all possible expressions. In his work,
Freitas [8] showed how the requirements of data mining and knowledge discovery
influence the design of EAs. In particular, how individual representation, operators
and fitness functions have to be adapted for extracting high-level knowledge from
data. Data mining is more or less the same as symbolic regression but the emphasis is
not on complete description of the data but on extracting salient nuggets of
information from potentially large data sources (e.g. databases).[11] GP possesses
certain advantages that make it suitable for application in data mining, such as
convenient structure for rule generation. Furthermore, it is convenient for process

parallelism to improve computational efficiency.[10]
The object of the search is a symbolic description of a model, not just a set of

coefficients in a pre-specified model. This sharply contrast with other methods of
regression, including feed-forward ANN, where a specific model is assumed and
often only the complexity of this model can be varied.[15]

Genetic programming and its variants are in principle capable of expressing
functional forms, given a sufficiently expressive function set; they are capable of

12

expressing a linear relationship or a non-linear relationship. With Genetic
programming and variants, the object of search is a composition of the input
variables, coefficients and primitive functions such that the error of the function with
respect to the desired output is minimized.

5.2 Fitness Measure

One important application of GEP is symbolic regression, where the goal is to
find an expression that performs well for all fitness cases within a certain error of the
correct value. Mathematically, this can be expressed by the equation:

f = M - E, ……….………………………………………………….….…..(2)
where M is the range of selection, and E is the absolute error between the

number generated by the ET and the target value, as follows:

E= |C(i,j) - Tj|, ………..………………………………..…………….………(3)

where C(i,j) is the value returned by the individual chromosome i for fitness case j
and Tj is the target value for fitness case j (for all j of the fitness cases). The precision
for the absolute error is usually very small, for instance 0.01. For example, for a set of
10 fitness cases and an M = 100, f max = 1000 if all the values are within 0.01 of the
correct value, as follows:

fi = fmax =Ct * M, ……………………………………………………………(4)

where Ct is the number of total fitness cases. If, for all j, |C(i,j) - Tj|, (the precision)
less or equal to 0.01, then the precision is equal to zero. So, the fitness measure fi of
an individual program i is given by:

()∑
=

−−=
iC

j
jjii TCMf

1
),(..………….………………………….…..……..….(5)

The advantage of this kind of fitness function is that the system can find the
optimal solution for itself. [7]

6 Tests and Results

Experiments carried out in this section are implemented using the Symbolic
Regression problem. Due to its simplicity and common use in most of the
applications, it has almost become a benchmark problem in assessing such systems
that employ learning and training in evolution. As a standard benchmark problem it is
very useful in making comparisons more practicable. Each test applies 100 run of
randomly generated populations to evaluate success rates of the approach. In the

13

following tests two equations are used to determine the efficiency of the
improvements carried out, they are as indicated in the tables of comparisons:

Y = a4 + a3 + a2 + a …………...……………………………..………...(6)
Y=3a2+2a+1 ………..…..……………………………….………..……(7)

Fitness cases (Training set) are chosen as those used by all methods proposed so
far, this is done to facilitate comparisons. Training cases are given in Tables (1) and
(2), parameter settings are given in Table (3).

Table (1) Fitness Cases for First Problem

Table (2) Fitness Cases for Second Problem
In Out

-4.2605 46.9346
-2.0437 9.4427
-9.8317 271.3236
2.7429 29.0563
0.7328 4.0766
-8.6491 208.1226
-3.6101 32.8783
-1.8999 8.0291
-4.8852 62.8251
7.3998 180.0707

Table (3) Parameter Settings for Tests
Setting GEP
Number of Runs 100
Generation 50
Population 30
Chromosome Length 39
Genes 3 (h=6)
Function Set {+,-,*,/}
Terminal Set {a}

In Out
2.81 95.2425

6 1554
7.043 2866.5485

8 4680
10 11110

11.38 18386.0340
12 22620
14 41370
15 54240
20 168420

14

6.1 Improvements Related to Parameter Setting
Applying Multi-population feature enables the system to use different settings

for each population and can therefore reduce the parameter-setting problem discussed
in the first subsection. Having P Populations each of size S with G as the number of
Generations, the test is done using 3 populations, with settings in Table (4). Results
are shown in Table (5).

Table (4) Multi-Population system with Different Parameter Setting

 Transposition Recombination
P S G Mutation IS RIS GIS One Two Gene

Improved
1 7 50 0.05 0.1 0.1 0.1 0.2 0.5 0.1
2 10 - 0.03 0.15 0.15 0.1 0.1 0.7 0.15
3 13 - 0.1 0.15 0.1 0.15 0.3 0.5 0.1

GEP 1 30 50 0.05 0.1 0.1 0.1 0.2 0.5 0.1

Table (5) Results of applying Multi-population

Evolved Function GEP results Improved Results
Y = a4 + a3 + a2 + a 0.81 0.91
Y = 3a2+ 2a+ 1 0.83 0.92

6.2 Improvements Related to Linking Function

This is another case that can make use of the multi-population feature in
investigating the affect that linking functions have on fitness calculations.

 First, different populations were introduced each having its own local linking
function, results showed that the ‘*’, ‘-’, and ‘/’ function were not able to enhance the
rate of successful runs, the rate went down for all functions except the ‘+’ function.

Second, different linking functions were applied to link genes. Having 3 genes,
the proposal suggests linking first and second genes with one linking function, while
linking the result with the third gene by another one. Results showed that this was
also not helpful in increasing success rates.

Gained results point out a very normal consequence, as the type of rules evolved
in the tests relies heavily on addition; any other linking function will not be
appropriate in this case. The function to be evolved is a summation process of
multiple terms. It is very clear that the use of the Multi-population feature enabled the
study of applying various linking functions to the system, and was able to distinguish
the best population that gave best results.

6.3 Improvement Related to Flat Genes

Flat genes are avoided by imposing some monitoring process on the application
of the IS operator, so that, when the number of functions in the head is zero, an

15

emergency mutation is forced after that IS operation to ensure the existence of a
function in the head of that modified gene. Results are shown in Table (6).

Table (6) Results of Adjusting IS Operator for Eliminating Flat Genes

Evolved Function GEP results Improved Results
Y = a4 + a3 + a2 + a 0.81 0.90
Y = 3a2+ 2a+ 1 0.83 0.92

6.4 Improvement Related to Illegal operations in genes

The problem of illegal operations in genes is treated by adding a very simple
mechanism in fitness calculation called emergency mutation, when an invalid
operation is about to cause the termination of fitness calculation, it is simply mutated
in its place to any of the other remaining functions in the function set. Using this
mechanism, the gene is saved from complete loss and can be presented again in the
population with an appropriate fitness value. The result of applying this idea to GEP
is shown in Table (7).

Table (7) Results of Eliminating Illegal Operations

Evolved Function GEP results Improved Results
Y = a4 + a3 + a2 + a 0.81 0.88
Y = 3a2+ 2a+ 1 0.83 0.89

6.5 Improvement Related to Biased Components

Biased GEP was tested through biasing different components and monitoring the
effect of that biasing on the process of evolution and the rate of success; results are
shown in Table (8).

Table (8) Results of Biased GEP Operations

Evolved Function Biased Function GEP Results Improved Results

Y = a4 + a3 + a2 + a

‘+’

0.81

0.57
‘-‘ 0.76
‘*’ 0.90
‘/’ 0.68

Y = 3a2+ 2a+ 1

‘+’

0.83

0.91
‘-‘ 0.74
‘*’ 0.73
‘/’ 0.83

For the first case in Table (8), biasing the multiplication operator influenced the

rate of success considerably. This is mainly because the rule depends heavily on this
function. While in the second case the biasing of the addition operator was more

16

successful than the others, as the evolved rule depends more on addition than
multiplication, subtraction or division.

7 Conclusions

Many linear variants of Genetic programming are presented in the literature, of
these; GEP was investigated thoroughly as it possesses the least limitations among
other methods. Like any other method, GEP has some points of weakness that reduces
its efficiency. These points were investigated and reinforced with five solutions that
managed weak points in an efficient manner; weak points included the choice of the
best parameter settings for evolution, the use of different linking functions, the
problem of gene flattening, and the illegal operations that occur in the genes of the
chromosome.

The five enhancement procedures suggested were able to eliminate these
problems and increase the efficiency of the method. Enhancement procedures
included introducing the Multi-population feature, the Emergency Mutation feature,
and the Component Biasing feature. Tests and results showed that success rates
improved clearly towards higher values in all cases.

8 References

[1] AL-Saati, N.A., (2005), A Novel Proposed Model for Automatic Programming
in Problem Solving, PhD Thesis, University of Mosul, College of Computers
and Mathematical Sciences, Mosul, Iraq, 147p.

[2] Duffy, J., and Engle-Warnick, J., (2002), Using Symbolic Regression to Infer
Strategies from Experimental Data. In S-H Chen, Ed., Evolutionary
computation in economics and finance New-York Physica-Verlag.

[3] Eiben, A.E., Hinterding, R., and Michalewicz, Z., (1999), Parameter Control
in Evolutionary Algorithms, IEEE Transactions on Evolutionary Computation,
Vol. 3, No. 2, pp: 124-141.

[4] Eldrandaly, K., and Negm, A., (2008). Performance Evaluation of Gene
Expression Programming for Hydraulic Data Mining. International Arab
Journal of Information Technology, vol. 5, no. 2, pp. 126-131.

[5] Ferreira, C., (2001), Gene Expression Programming: A new Adaptive
Algorithm for Solving Problems, in Complex Systems, 13(2),pp:87-129.

[6] Ferreira, C., (2002), Discovery of the Boolean Functions to the best Density-
Classification Rules using Gene Expression programming, in Lutton, E.,
Foster, J. A., Miller, J., Ryan, C., and Tettamanzi, A. G. B., Eds., in
Proceedings of the 4th European Conference on Genetic Programming, EuroGP
2002, Vol. 2278 of Lecture Notes in Computer Science, Springer-Verlag,
Berlin, Germany,pp: 51-60.

17

[7] Ferreira, C., (2002), Gene Expression Programming in Problem Solving, in
Roy, R., Koppen, M., Ovaska, S., Furuhashi, T., and Huffmann, F., Eds., Soft
Computing and Industry - Resent Applications, Springer-Verlag, pp: 635-654.

[8] Freitas, A.A., (2002), A survey of evolutionary algorithms for data mining and
knowledge discovery, to appear in: Ghosh, A. and Tsutsui, S., Eds.: Advances
in Evolutionary Computation, Springer-Verlag.

[9] Hoai, N.X., (2001), Solving the Symbolic Regression with Tree-Adjunct
Grammar Guided Genetic Programming: The Preliminary Results, In The
Proceedings of The 5th Australasia-Japan Joint Workshop on Evolutionary
Computation and Intelligent Systems (AJWIES), Dunedin, New Zealand, 19-
21st Nov. 2001,pp:1-6.

[10] Keijzer M., (2002), Scientific Discovery using Genetic Programming, Ph.D.
Thesis at the Technical University of Denmark.

[11] Langdon, W.B., (1996), Genetic Programming and Databases, Internal Note
IN/96/4, 11 February 1996, Short Survey, 3p.

[12] Lopes, H.S. and Weinert, W.R., (2004), A Gene Expression Programming
System for Time Series Modeling, In: Proceedings of XXV Iberian Latin
American Congress on Computational Methods in Engineering (CILAMCE),
Recife (Brazil), 10-12/November, 2004, 13p.

[13] Oltean M., Dumitrescu D., (2002), Multi Expression Programming, Technical
Report: UBB-01-2002, Babes-Bolyai University, Cluj-Napoca, Romania, in
Journal of Genetic Programming and Evolvable Machines, Kluwer, Second
tour of review, 33p.

[14] Salhi, A., Glaser, H., and De Roure, D., (1998), Parallel Implementation of a
Tool for Symbolic Regression, in Information Processing Letters, Vol. 66, No.
6, pp: 299-307.

[15] Takač, A., (2003), Genetic Programming in Data Mining: Cellular
Approach, M.Sc. Thesis, Institute of Informatics Faculty of Mathematics,
Physics and Informatics, Comenius University, Bratislava, Slovakia.

[16] Wilson, S., (2008), Classifier Conditions Using Gene Expression
Programming. Report No. 2008001, University of Illinois at Urbana-
Champaign, USA.

