
2ND SECTION (PART II)

Gravimetric Analysis

Definition of Gravimetric Analysis

It is a type of quantitative analysis that involves weighing of the constituent under determination. IN OTHER WORDS, It is the process of isolating and weighing an element or compound in a pure form.

Comparison between

Volumetric Analysis (Titration) & Gravimetric Analysis

	Volumetric Analysis (Titration)	Gravimetric Analysis
Diagram:	Standard (titrant) —	Several Steps ppt sample t certain reagents
Sample:	Liquid or Solid	Liquid or Solid
Result obtained:	E.P. (Vol. consumed from titrant) <u>Ex</u> : 4 ml	Weight of the ppt <u>Ex</u> : 4 g
Required:	Concentration of the sample	Concentration of the sample
Steps of Calculations:	1 st : Calc. of <u>equivalence</u> factor (F). 2 nd : Calc. of Concentration.	1 st : Calc. of gravimetric factor (F). 2 nd : Calc. of Concentration.

Examples of gravimetric determinations:

1) Gravimetric determination of NaCl:

$$NaCl + AgNO_3 \longrightarrow AgCl \downarrow + NaNO_3$$

$$ppt$$

filtered, dried and weighed and then from the weight of the ppt, the concentration of NaCl sample can be calculated.

2) Gravimetric determination of Potash alum [KAI(SO₄)₂.12H₂O]:

$$2 \text{ KAI}(SO_4)_2.12H_2O \longrightarrow 2 \text{ AI}(OH)_3 \downarrow \xrightarrow{\text{ignition}} \text{AI}_2O_3 \downarrow \\ \boxed{\text{gelatinous ppt}}$$

Not suitable for weighing.

More suitable for weighing & from its weight, the concentration of Potash alum sample can be calculated.

Calculations for Gravimetric Analysis { 2 STEPS }:

 1^{st} step: Calculation of the Gravimetric Factor OR Conversion Factor (F):

Gravimetric Factor is the weight of the sample equivalent 1 g of the ppt.

$$F = \frac{m \times (M.W. \text{ of substance sought})}{n \times (M.W. \text{ of substance weighed})} \ge No \text{ Unit} \ge No \text{ of substance weighed}$$

 \underline{m} & \underline{n} are integers that make the molecular weights in the numerator (المقام) & denominator (المقام) chemically equivalent.

N.B. Gravimetric factor (F) is completely different from Equivalence factor (F).

-					•						•			٠		 ٠			٠		٠		 •			•				•	Ļ	2	5	
																٠					٠						٠							
														٠		٠		٠		 	٠						٠			٠				
									٠	٠																								
													٠	٠		٠				 	٠						٠	 	٠	٠				

2nd step: Calculation of the Concentration:

If the sample is liquid (solution):

Concn. =
$$\frac{\text{Wt. of the ppt} \times \text{F} \times 1000}{\text{Volume taken from the sample}} = \dots g/L$$

$$= \frac{\text{Wt. of the ppt} \times \text{F} \times 100}{\text{Volume taken from the sample}} = \dots g\% \text{ (i.e. g/100 ml)}$$

If the sample is solid (powder):

Concn. or Purity =
$$\frac{\text{Wt. of the ppt } \times \text{F} \times 100}{\text{Wt. taken from the sample}} = \dots g\% (i.e. g/100 g)$$

Example: In the determination of MgSO₄.7H₂O:

The reaction can be summarized as follows:

<u>final ppt</u>

2 MgSO₄.7H₂O \longrightarrow 2 MgNH₄PO₄.6H₂O \downarrow $\xrightarrow{\text{ignition}}$ Mg₂P₂O₇ \downarrow

sample

Mag. amm. phosphate

Mag.pyrophosphate

$$2 (MgSO_4.7H_2O) \equiv 1 (Mg_2P_2O_7)$$
sample
final ppt
n

$$F = \frac{2 \times (M.W. \text{ of } MgSO_4.7H_2O)}{1 \times (M.W. \text{ of } Mg_2P_2O_7)}$$

Then the concentration can be calculated from one of the above mentioned equations:

Concn. =
$$\frac{\text{Wt. of the ppt} \times \text{F} \times 1000}{\text{Volume taken from the sample}} = \dots g/L$$

Derivation of Gravimetric Factor (F):

Example: In the determination of MgSO4.7H2O:

$$2 (MgSO_4.7H_2O) \longrightarrow 1 (Mg_2P_2O_7)$$
sample final ppt

The Gravimetric Factor (F) means:

the weight of the sample (MgSO₄.7H₂O) equivalent $\mathbf{1}$ \mathbf{g} of the ppt (Mg₂P₂O₇).

2 moles of MgSO₄.7H₂O \longrightarrow 1 mole of Mg₂P₂O₇

<u>i.e.</u> $2 \times (M.W.)_g$ of $MgSO_4.7H_2O \longrightarrow 1 \times (M.W.)_g$ of $Mg_2P_2O_7$

$$\therefore \ \ ?) g \ of \ MgSO_4.7H_2O \longrightarrow \boxed{\textbf{1} \ \textbf{g}} \ of \ Mg_2P_2O_7$$

$$\therefore F = 1 \times \frac{2 \times (M.W. \text{ of } MgSO_4.7H_2O)}{1 \times (M.W. \text{ of } Mg_2P_2O_7)}$$

$$\therefore F = \frac{2 \times (M.W. \text{ of } MgSO_4.7H_2O) \longrightarrow \text{sample}}{1 \times (M.W. \text{ of } Mg_2P_2O_7) \longrightarrow \text{final ppt}}$$

Basic Steps for Any Gravimetric Analysis

- 1. Sampling & Preparation for precipitation.
- 2. Precipitation.
- 3. Digestion (i.e. Leaving the ppt in contact with the soln. for a considerable time).
- 4. Filtration & Washing.
- 5. Drying OR Ignition.
- 6. Weighing & Calculations.

Required Glassware for Gravimetric Analysis (الأدوات المطلوبة):

- Beaker 250 ml.
- 10-ml bulb pipette.
- 10-ml graduated pipette.
- 10-ml measuring cylinder.
- Filter papers (Whatmann no.1).
- Funnel.
- Flask.
- Watch glass.
- Test tube.

Exp.(8): Gravimetric Determination of Na₂SO₄.10 H₂O

(USP 2007)

Principle

It depends on the precipitation of SO_4^{--} as $BaSO_4$ by adding $BaCl_2$ to a hot solution of SO_4^{--} slightly acidified with HCl.

$$SO_4^{--}$$
 + Ba^{2+} \longrightarrow $BaSO_4 \downarrow$ sample $BaCl_2$ (ppting agent) white ppt

Procedure

Sampling & Preparation for Precipitation

- 1- Transfer 10 ml of the sample of sodium sulphate into a 250 ml beaker, Dilute to about 150 ml with water.
- 2- Add about 10 ml dilute HCl, and heat to boiling.
- 3- Remove the flame, and add slowly with constant stirring (by glass rod), a hot 2 % BaCl₂ solution in slight excess (about 10 ml heated in a test tube).

Precipitation

4- Test for complete precipitation by leaving the precipitate to settle, and then adding to the clear supernatant liquid, drops of the precipitating agent (2% BaCl₂), noting if any turbidity appears.
If turbidity appears → add more drops of BaCl₂ soln.
and repeat the test.

If no turbidity \rightarrow complete the next steps.

								 																			. ,	Q	ろ	
		-	-																											

Digestion

- <u>5-</u> Cover the beaker with a watch glass, and place it in a water bath almost at the boiling point for about one hour.
- 6- Decant the supernatant liquid in a suitable ashless filter paper and wash the precipitate in the beaker by decantation two times with hot water.

Filtration & Washing <u>Decantation means</u>: Pouring off the clear upper portion (supernatant) of a fluid leaving a sediment or a ppt at the bottom WHILE <u>Washing by Decantation means</u>: mixing some of the washing solution with the ppt, then allow the ppt to settle down again and then the clear supernatant is decanted.

Repeat washing & filtration until all the ppt is filtered

Calculations:

$$F = \frac{1 \times (M.W. \text{ of Na}_2SO_4.10H_2O)}{1 \times (BaSO_4)}$$

$$F = \frac{1 \times (M.W. \text{ of Na}_2SO_4.10H_2O)}{1 \times (BaSO_4)}$$

$$Concn. = \frac{Wt. \text{ of the ppt} \times F \times 1000}{Volume \text{ taken from the sample}} = \dots g/L$$

***** >> Best wishes >> *****